
MMAT5030 Notes 4

1 Inner Product Space and Orthogonal Projection

In the previous lectures we studied the uniform convergence of Fourier series. Since the limit of
a uniformly convergent series of continuous functions is again continuous, the uniform conver-
gence result only applies to continuous, piecewise 2π-periodic functions. When the function is
piecewise smooth 2π-periodic, we have pointwise convergence at points of continuity and average
convergence at jump discontinuity points. In this section we will measure the distance between
functions by a norm weaker than the uniform norm. Under the new L2-distance, you will see
that every integrable function is equal to its Fourier expansion in a sense that will be described
below.

Recall that there is an inner product defined on the n-dimensional Euclidean space called the
Euclidean metric

< x, y >=
n∑
j=1

xjyj , x, y ∈ Rn.

With this inner product, one can define the concept of orthogonality and angle between two
vectors. Likewise, we can also introduce a similar product on the space of integrable functions.
Specifically, for f, g ∈ R[−π, π], the L2-product is given by

< f, g >=

∫ π

−π
f(x)g(x) dx.

The L2-product behaves like the Euclidean metric on Rn except at one aspect, namely, the
condition < f, f >= 0 does not imply f ≡ 0. This is easy to see. In fact, when f is equal to
zero except at finitely many points, then < f, f >= 0. It can be shown that < f, f >= 0 if and
only if f is equal to zero except on a set of “measure zero” (see the end of this section). This
minor difference with the Euclidean inner product will not affect our discussion much, except
more caution is needed when we proceed. Parallel to the Euclidean case, we define the L2-norm
of an integrable function f to be

‖f‖ =
√
< f, f >,

and the L2-distance between two integrable functions f and g by ‖f − g‖2. (When f, g are
complex-valued, one should define the L2-product to be

< f, g >=

∫ π

−π
f(x)g(x) dx ,

so that < f, f >≥ 0.) One can verify that the triangle inequality

‖f + g‖ ≤ ‖f‖+ ‖g‖

holds. In fact, by taking square of both sides, this inequality reduces to showing

Re

∫ π

−π
f(x)g(x) dx ≤ ‖f‖‖g‖ ,

which is the Cauchy-Schwarz inequality.

We can also talk about fn → f in L2-sense, i.e., ‖fn − f‖ → 0, or equivalently,

lim
n→∞

∫ π

−π
|fn(x)− f(x)|2 dx = 0, as n→∞ .
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This is a convergence in an average sense. It is not hard to see that when {fn} tends to f
uniformly, {fn} must tend to f in L2-sense. In fact, we have the inequality

‖f‖2 ≤ 2π‖f‖2∞ ,

which means
‖f − g‖ ≤

√
2π‖f − g‖∞ ,

so uniform convergence is stronger than L2-convergence. A moment’s reflection will show that
the converse is not always true. For instance, the functions fn(x) = 0, x ∈ [−π,−1/n]∪ [1/n, π],
and = n1/4, x ∈ (−1/n, 1/n), satisfy ‖fn − 0‖ =

√
2n−1/4 → 0 but ‖fn − 0‖∞ → ∞ as n → ∞.

Hence convergence in L2-sense is weaker than uniform convergence. It is interesting to observe
that L2-convergence and pointwise convergence are not compatible, see exercise.

Our aim is to show that the Fourier series of every integrable function converges to the function
in the L2-sense. In order to do this, it is necessary to study orthonormal sets in an inner product
space. Let V be an inner product space and u ∈ V . The vector u is called normalized if ‖u‖ = 1
and two vectors u, v are orthogonal if 〈u, v〉 = 0. A set is called orthonormal if all vectors
in this set are normalized and pairwise orthogonal. It is not hard to show that all vectors in an
orthonormal set must be linearly independent.

Let W be a subspace of V of dimension n and S = {w1, w2, · · · , wn} be an orthonormal set
in W . Since these vectors are also linearly independent, S forms an orthonormal basis of W .
Now, we consider the following question: Given u ∈ V , how can we find the point w∗ ∈W that
minimizes the distance from u to W? In other words, we post

min{‖u− w‖ : w ∈W}.

This problem can be posed without referring to an orthonormal basis. However, the key point
is, using an orthonormal basis, there is a nice formula for w∗.

Theorem 4.1. Let u ∈ V where V is an inner product space and W is a subspace spanned by
the orthonormal set {w1, w2, · · · , wn}. The followings hold:

(a)
‖u− w∗‖ ≤ ‖u− w‖ ∀w ∈W ,

where w∗ =
∑n

j=1 αjwj , αj = 〈u,wj〉, and equality holds if and only if w = w∗; and

(b)
〈u− w∗, w〉 = 0 , ∀w ∈W.

Proof. (a) To minimize ‖u− w‖ is the same as to minimize ‖u− w‖2. Every w in W can be
written as w =

∑n
j=1 βjwj , βj ∈ R. We have

‖u− w‖2 = 〈u− w, u− w〉
= 〈u, u− w〉 − 〈w, u− w〉
= ‖u‖2 − 2〈u,w〉+ ‖w‖2

= ‖u‖2 − 2

n∑
j=1

αjβj +
n∑
j=1

β2j .

When w = w∗, we have αj = βj , so

‖u− w∗‖2 = ‖u‖2 −
n∑
j=1

α2
j .
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Therefore,
‖u− w∗‖2 ≤ ‖u− w‖2

is the same as

‖u‖2 −
n∑
j=1

α2
j ≤ ‖u‖2 − 2

n∑
j=1

βjαj +
n∑
j=1

β2j .

But this follows readily from the inequality

n∑
j=1

(βj − αj)2 ≥ 0 .

It is also clear that the equality holds if and only if βj = αj for all j, that is, w = w∗ . (a) is
established.

Next, (b) follows from observing 〈u− w∗, wj〉 = 0 for all j.

The point w∗ ∈W is called the orthogonal projection of u on W . Proposition 4.1(b) asserts
that u − w∗ is orthogonal to W . In fact, this property uniquely characterizes w∗, see exercise.
We point out w∗ = u if and only if u ∈W .

2 Mean Convergence of Fourier Series

Now, we focus on the space R[−π, π] with the L2-product. Just like the canonical basis
{e1, . . . , en} in Rn, we knew that the functions{

1√
2π
,

1√
π

cosnx,
1√
π

sinnx

}∞
n=1

forms an orthonormal set in R[−π, π]. (In the complex case, it is the set{
1√
2π
einx

}∞
n=−∞

.

But we mainly consider the real case here.)

In the following we denote by

En =

〈
1√
2π
,

1√
π

cos jx,
1√
π

sin jx

〉n
j=1

the (2n+ 1)-dimensional vector space spanned by the first 2n+ 1 trigonometric functions.

First of all, taking {wj} = {1/
√

2π, cos jx/
√
π, sin jx/

√
π} and W = En in Proposition 4.1, a

direct computation shows that the orthogonal projection of f on En is precisely given by Snf ,
where Snf is the n-th partial sum of the Fourier series of f . We can rewrite Proposition 4.1 in
this special case as

Theorem 4.1’ For f ∈ R[−π, π] and for each n ≥ 1,

(a)
‖f − Snf‖ ≤ ‖f − g‖ ,
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and

(b)
〈f − Snf, g〉 = 0 ,

for all g of the form

g = c0 +

n∑
j=1

(cj cos jx+ dj sin jx), c0, cj , dj ∈ R.

Here is our main result.

Theorem 4.2. For every f ∈ R[−π, π],

lim
n→∞

‖Snf − f‖ = 0.

Proof. Let f ∈ R[−π, π]. We further assume f ≥ 0 . For ε > 0, we can find a step function
s ≥ 0 such that s ≤ f and

∫ π
−π(f − s) < ε2/16M where M = supx f(x). Then

‖f − s‖ ≤

√
M

∫ π

−π
(f − s) =

ε

4
.

Next we modify s near its points of discontinuity to get a continuous, piecewise linear function
g1 satisfying

‖s− g1‖ <
ε

4
.

In case g1(π) 6= g1(−π), we modify this function near π to get a new, piecewise linear function
g satisfying g(π) = g(−π) and

‖g − g1‖ <
ε

4
.

Now g is a continuous, piecewise linear (hence piecewise C1-), 2π-periodic function. Appealing
to Theorem 2.5 in Text, we can find some n1 such that

‖g − Sng‖∞ <
ε

4
√

2π
, ∀n ≥ n1 .

It implies

‖g − Sng‖ ≤
√

2π‖g − Sng‖∞ <
ε

4
.

Putting things together, we have, for all n ≥ n1,

‖f − Snf‖ ≤ ‖f − Sng‖ (by Proposition 4.1’)

≤ ‖f − s‖+ ‖s− g1‖+ ‖g1 − g‖+ ‖g − Sng‖

<
ε

4
+
ε

4
+
ε

4
+
ε

4
= ε .

We have proved the theorem for non-negative functions. In the general case, we use the relation
f = f+ − f− and the triangle inequality to get

‖f − Snf‖ = ‖f+ − f− − Snf+ + Snf
−‖

≤ ‖f+ − Snf+‖+ ‖f− − Snf−‖ .
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Note that the use of Proposition 4.1’ is the key to the proof in this theorem. As an application
we have the following result concerning the uniqueness of the Fourier expansion.

Corollary 4.3. (a) Suppose that f1 and f2 in R[−π, π] have the same Fourier series. Then f1
and f2 are equal almost everywhere.

(b) Suppose that f1 and f2 are continuous, 2π-periodic functions having the same Fourier series.
Then f1 is equal to f2 everywhere.

Let f = f2 − f1. The Fourier coefficients of f all vanish, hence Snf = 0, for all n. By Theorem
4.2, ‖f‖ = limn→∞ ‖f − Snf‖ = 0. It follows that f2, hence f , must vanish almost everywhere.
In other words, f2 is equal to f1 almost everywhere. (a) holds. To prove (b), letting f be
continuous and assuming that it is not equal to zero at some x0, by continuity it is non-zero
for all points near x0. We can find some small δ > 0 such that f2(x) ≥ f2(x0)/2 for all
x ∈ (x0 − δ, x0 + δ). But then ∫ π

−π
f2 ≥

∫ x0+δ

x0−δ
f2

≥ f2(x0)

2
× 2δ > 0 ,

contradicting ‖f‖ = 0. Hence f must vanish identically.

Another interesting consequence of Theorem 4.2 is the Parseval’s identity.

Corollary 4.4. (Parseval’s Identity) For every f ∈ R[−π, π],

‖f‖22 =
π

2
a20 + π

∞∑
n=1

(
a2n + b2n

)
,

where an and bn are the Fourier coefficients of f .

Proof. Making use of the relations such as 〈f, cosnx/
√
π〉 =

√
πan, n ≥ 1,

〈f, Snf〉 = ‖Snf‖22 (by Proposition 4.1’ (b))

=
π

2
a20 + π

n∑
j=1

(a2j + b2j ).

By Theorem 4.2 and 〈f, Snf〉 = ‖Snf‖2 (Theorem 4.1’(b)),

0 = lim
n→∞

‖f − Snf‖2 = lim
n→∞

(
‖f‖2 − 2〈f, Snf〉+ ‖Snf‖2

)
= lim

n→∞

(
‖f‖2 − ‖Snf‖2

)
= ‖f‖2 − lim

n→∞
‖Snf‖2

= ‖f‖2 −
[π

2
a20 + π

∞∑
n=1

(
a2n + b2n

) ]
.

In general, an orthonormal set {φn} in R[a, b] is called complete if

‖f −
n∑
k=1

〈f, φk〉‖2 → 0, as n→∞ ,
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for every f . Whevever this happens, the proof above shows that the general Parseval’s Identity

‖f‖2 =

∞∑
n=1

〈f, φn〉2

holds. Our main theorem asserts that {1/
√

2π, cosnx/
√
π, sinnx/

√
π} forms a complete or-

thonormal set in R[−π, π]. It plays the role like the canonical basis {e1, · · · , cn} in the Euclidean
space Rn.

The norm of f can be regarded as the length of the “vector” f . Parseval’s Identity shows that
the square of the length of f is equal to the sum of the square of the length of the orthogonal
projection of f onto each one-dimensional subspace spanned by the sine and cosine functions.
This is an infinite dimensional version of the ancient Pythagoras theorem. It is curious to see
what really comes out when you plug in some specific functions. For instance, we take f(x) = x
and recall that its Fourier series is given by

∑
2(−1)n+1/n sinnx. Therefore, an = 0, n ≥ 0 and

bn = 2(−1)n+1/n and Parseval’s identity yields Euler’s summation formula

π2

6
= 1 +

1

4
+

1

9
+

1

16
+ · · · .

You could find more interesting identities by applying the same idea to other functions.

3 Appendix Sets of Measure Zero

This section is for reference only.

Let E be a subset of R. It is called of measure zero, or sometimes called a null set, if for every
ε > 0, there exists a (finite or infinite) sequence of intervals {Ik} satisfying (1) E ⊂ ∪∞k=1Ik and
(2)

∑∞
k=1 |Ik| < ε. (When the intervals are finite, the upper limit of the summation should be

changed accordingly.) Here Ik could be an open, closed or any other interval and its length |Ik|
is defined to the b− a where a ≤ b are the endpoints of Ik.

The empty set is a set of measure zero from this definition. Every finite set is also null. For, let
E = {x1, · · · , xN} be the set. For ε > 0, the intervals Ik = (x1 − ε/(4N), xk + ε/(4N)) clearly
satisfy (1) and (2) in the definition.

Next we claim that every countable set is also of measure zero. Let E = {x1, x2, · · · } be a
countable set. We choose

Ik =
(
xk −

ε

2k+2
, xk +

ε

2k+2

)
.

Clearly, E ⊂ ∪∞k=1Ik. On the other hand,

∞∑
k=1

|Ik| =

∞∑
k=1

ε

2k+1

=
ε

2
< ε .

We conclude that every countable set is a null set.

There are uncountable sets of measure zero. For instance, the Cantor set which plays an impor-
tant role in analysis, is of measure zero. Here we will not go into this.
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The same trick in the above proof can be applied to the following situation.

Proposition 4.5. The union of countably many null sets is a null set.

Let Ek, k ≥ 1, be sets of measure zero. For ε > 0, there are intervals satisfying {Ikj }, Ek ⊂ ∪jIkj ,
and

∑
j |Ikj | < ε/2k. It follows that E ≡ ∪kEk ⊂ ∪j,kIkj = ∪k ∪j Ikj and∑

k

∑
j

|Ikj | <
∑
k

ε

2k
= ε.

The concept of a null set comes up naturally in the theory of Riemann integration. A theorem of
Lebsegue asserts that a bounded function is Riemann integrable if and only if its discontinuity
set is null. (This result can be found in an appendix of Bartle-Sherbert and also in my 2060
notes. It will be proved again in Real Analysis. Presently you may simply take it for granted.)
Let us prove the following result.

Proposition 4.6. Let f be a non-negative integrable function on [a, b]. Then
∫ b
a f = 0 if and

only if f is equal to 0 except on a null set. Consequently, two integrable functions f, g satisfying∫ b

a
|f(x)− g(x)| dx = 0,

if and only if f is equal to g except on a null set.

We set, for each k ≥ 1, Ak = {x ∈ [a, b] : f(x) > 1/k}. It is clear that

{x : f(x) > 0} =
∞⋃
k=1

Ak .

By Proposition 4.5., it suffices to show that each Ak is null. Thus let us consider Ak0 for a
fixed k0. Recall from the definition of Riemann integral, for every ε > 0, there exists a partition
a = x1 < x2 < · · · < xn = b such that

0 ≤
n−1∑
k=1

f(zk)|Ik| =

∣∣∣∣∣
n−1∑
k=1

f(zk)|Ik| −
∫ b

a
f

∣∣∣∣∣ < ε

k0
,

where Ik = [xk, xk+1] and zk is an arbitrary tag in [xj , xj+1]. Let {k1, · · · , km} be the index
set for which Ikj contains a point zkj from Ak0 . Choosing the tag point to be zkj , we have
f(zkj ) > 1/k0. Therefore,

1

k0

∑
kj

|Ikj | =
∑
kj

f(zkj )|Ikj | ≤
n−1∑
k=1

f(zk)|Ik| <
ε

k0
,

so ∑
kj

|Ikj | < ε.

We have shown that Ak0 is of measure zero.

Conversely, suppose f is equal to 0 except on a null set A. Since f is integrable, for any ε > 0,
there is a partition a = x0 < x1 < · · · < xn = b such that∣∣∣∣∣

∫ b

a
f −

n∑
k=1

f(zk)(xk − xk−1)

∣∣∣∣∣ < ε,
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for any tag zk in the interval [xk−1, xk]. Since A is a null set, for each k we can choose a tag
zk ∈ [xk−1, xk] ∩Ac, which yields f(zk) = 0 . Now∣∣∣∣∫ b

a
f

∣∣∣∣ =

∣∣∣∣∣
∫ b

a
f −

n∑
k=1

f(zk)(xk − xk−1)

∣∣∣∣∣+

∣∣∣∣∣
n∑
k=1

f(zk)(xk − xk−1)

∣∣∣∣∣
≤ ε+

∣∣∣∣∣
n∑
k=1

(0)(xk − xk−1)

∣∣∣∣∣
= ε.

Since ε is arbitrary, we have
∫ b
a f = 0.

A property holds almost everywhere if it holds except on a null set. For instance, this
proposition asserts that the integral of a non-negative function is equal to zero if and only if it
vanishes almost everywhere.


